2023 年,《自然》杂志(Nature)进行了一项针对 1600 名科学家的调查研究,以了解科研工作者对生成式AI的使用状况和想法。 结果显示,有一半的参与者本身就是研究 AI 领域的研究者。如果排除这部分人群,在非 AI 领域的研究者中,也有超过一半的人会在科研工作中使用 AI。 研究人员使用 AI 情况,图片来源:参考文献 [1] 在科研人员眼中,生成式 AI 的优势可以利用在三个方向:辅助非英语母语的作者撰写论文(包括编辑和翻译)、用 AI 编写代码、用 AI 提炼论文内容以节省阅读时间。 生成式 AI(在科研领域)的优点,图片来源:参考文献 1 辅助非英语母语的作者撰写论文很好理解,生成式 AI 的英语内容生成能力,确实会比不少母语不是英语的人更“地道”。并且 AI 可以根据需求,将文章的表述调整得更接近科研论文风格。 而 AI 编写代码也可以大大减少研究者的时间,只要给出清晰的要求,诸如 GPT 之类的大模型就可以按照要求生成代码,并且可以对每一段代码的功能进行说明。 AI 编写代码不仅能帮助计算机专业的研究者,非计算机专业的研究者同样有编程需求(比如做生物信息分析),AI 编写代码确实可以大大提高工作效率,让研究者把智力和时间花费在自己更擅长更重要的事情上。 而今天,生成式 AI 提取摘要关键信息的能力已经非常优秀,并且可以根据要求,对论文的特定模块,比如“研究方法”“结果与讨论”等部分做更精确的信息提取。因此,用 AI 来“过滤”论文,确实可以节约时间。 但在这些应用中,AI 并没有直接参与科学研究,它更像是一本方便查询的字典或者称手的螺丝刀,能够帮助科研人员提高工作效率,而科学研究的核心工作还是由科学家来完成的。
AI 参与论文撰写和评审
1
AI 写论文
自 2022 年末 GPT 3.0 发布以来,生成式 AI 的内容撰写能力得到了人们广泛的认可。并且在一些中学和大学中,学生使用生成式 AI 来写作业、写小论文早已不再是什么新鲜话题。 但没有学校会鼓励这样的行为,毕竟,这样的“偷懒”行径不利于学生的思考和成长。 不过,在《自然》杂志的调查中,有些研究者也提到,可以使用 AI 来撰写论文稿件以节约时间,这就涉及到“用 AI 写论文”这件事了。 实际上,对于年轻科学家来说,写论文算是一个“基本功”性质的工作。而对于一些不需要做实验的研究领域,查资料写论文几乎占据了科学研究的绝大部分内容。如果 AI 可以写论文,那这些领域科学家工作会不会受到影响? 需要强调的是,科学界并不认可直接使用 AI 撰写论文。 首先,我们要区分写论文的两种方式:“先由人类撰写论文初稿,再由 AI 调整语句和表达”和“由 AI 生成论文初稿,再由人类优化”。这两个写论文的方式看起来只是顺序颠倒了,但本质上却是两件完全不同的事情。 由人类科学家撰写初稿的时候,对于数据的分析,对结果的讨论完全是人类科学家展开的。即便是综述型论文的撰写,对于内容的整合讨论和思考,也是科学家智慧的表达。而后续的 AI 优化,只是对语法、表述方式的优化。AI 只是工具,不是作者。 但如果先由 AI 生成稿件,人类做修改,AI 就成了作者。AI 虽然能够产出“看起来像那么回事”的文字,但 AI 在生成论文内容的时候,并不会带有“科学家的思考”,只是根据预训练的内容生成文字,得出的结论可能是偏颇的、不合理的。 而更糟糕的是,AI 在撰写的论文会存在一些“莫名其妙”的错误。比如,AI 会凭空捏造文献,遵守学术道德的科研工作者在写论文的时候不会存在这样的问题。而对于一个直接用 GPT 生成论文的人来说,很可能也不会逐篇检查文献。这样的论文投递出去,纯粹是浪费审稿人员的时间。 目前,很多期刊公司已经明确禁止把 AI 作为论文作者。比如《自然》和《科学》(Science)。爱思唯尔(Elsevier)、斯普林格(Springer)等知名的学术期刊出版公司,都发布了声明禁止出现“AI 作者”,对于论文中其他使用到 AI 的地方,必须注明使用方式以及 AI 模型版本。 同时,AI 生成的图片一般情况下也是不允许发表的(特殊情况下经过编辑允许可例外)。 因为 AI 绘图时候并不是对现实内容的精准还原。这在艺术创作领域并不是什么严重问题,但科研论文中的图片,必须真实严谨,因此,AI 生成的图片并不被允许。比如前段时间在学术界闹得沸沸扬扬的“AI 小鼠”图片,就与科学事实严重不符,因而被撤稿。 被撤稿的文献中用 Midjourney 生成的图片 当然了,学术期刊领域并不是绝对排斥 AI 技术。 比如,在爱思唯尔(Elsevier)公司的声明中就提到,AI 技术是可以用于提升论文的可读性和优化语言表达的。而且使用检查拼写、语法和参考文献的基础性 AI 工具的时候,不需要做特别说明。 所以,在撰写科学论文方面,AI 并不会替代人类科学家,但可以提高科学家写论文的效率。
2
AI 参与论文评审
在科学论文领域,还有一项令科研人员头疼的问题——同行评审。 科研人员在自己的研究工作之外,还需要评审同行的科研论文。随着科研论文的增加,科研人员需要投入在同行评审上的时间也越来越多。 而现在,AI 工具也开始出现在这一领域,帮科学家减轻负担。比如,Penelope.ai 工具,可以检查稿件结构和参考文献格式;StatReviewer 可以用于检验数据和统计方法的可靠性。 另外,一种叫 UNSILO 的工具,可以提取论文的概要,方便人类科学家评审。还有一些研究人员直接使用 Chat-GPT 之类的 AI 生成同行评审内容。 在 AI 参与同行评审问题上,AI 可以参与多少,以及以何种方式参与还有待商榷。但可以确定的是,目前,绝大部分期刊的论文评审工作依然需要人类科学家完成。 美国国立卫生研究院(NIH)和澳大利亚研究委员会(ARC)都发表声明,禁止科研人员使用 AI 生成同行评审内容。因为科研论文的评审会涉及专业的知识,而且论文中可能涉及敏感数据,上传到 Chat-GPT 可能存在数据泄露的风险。
AI 直接介入科学研究相关工作
前面说到的都是 AI 作为辅助工具参与科学研究的情况。而在某些领域,AI 起到的作用可能真的不亚于人类科学家。实际上,早在生成式 AI 兴起之前,AI 就已经在这些领域大放异彩了。
另外,AI 对于数据的分析处理能力,同样可以帮人类科学家更好地进行研究。通过训练,AI 可以在大量的数据中去除噪声数据,让科研人员获得更可靠的信息。 以天文学研究为例,地面上的天文望远镜在拍摄星空照片时,会受到大气层的干扰。过去为了排除大气层的干扰,人们需要把望远镜发射到太空中去,比如哈勃望远镜、韦布望远镜。 而利用 AI 工具,科学家可以优化地面望远镜拍摄到的图像,消除大气层的干扰。而且应用深度学习的 AI 模型优化效果比传统的方法更高。 地面望远镜拍摄到的照片逐渐去噪(左上为原始图像,右下为处理之后图片),图片来源:参考文献 [7] 另外,2019 年科学家发布了一张黑洞照片,引起了全世界的关注。当时,大家看到的是下图中左边的样子。2023 年,在 AI 模型 PRIMO 的帮助下,科学家优化了这幅图像,成了下图中右边图像的样子。 2019 年发布的黑洞照片(左)和经过 PRIMO 处理后(右)。图片来源,参考文献 [8] 这样更高分辨率的图像,对于科学家更准确地估算黑洞的质量、大小以及物质消耗速率能起到帮助。 当然,除了对图像去噪,AI 的数据处理能力同样可以应用在其他类型的数据中。可以说,在 AI 工具的帮助下,科学家们确实能拿到更多更好的结果,这对于科研人员来说是非常有价值的。
讨论
从前面的应用中我们可以看出,在科学研究领域,人类科学家依然有着不可替代的作用。从科研思路的提出,到实验方法的设计,再到进行实验、分析数据,都需要人类科学家的智慧。 在生成式 AI 出现之后,人们虽然可以用它辅助优化文字、语法、表述,但论文的撰写以及同行评审依然依赖人类科学家。 而即便是在 AI 预测蛋白质模型这样的案例中,最终的观察验证还是要由人类科学家完成。且在这些模型中,AI 虽然能够做出预测,但 AI 的预测过程是一个“黑箱”,AI 并不能够解释为什么做出这样的预测。对于蛋白质折叠的机理的探索,依然需要人类科学家完成。 但无可否认的是,在 AI 的帮助下,科学家解决问题的效率确实提高了。科学家们可以把注意力和时间更多地集中到更高维度的思考上。 目前,依然有不少科研领域还没有 AI 参与,但正如哈佛商业学院教授卡里姆·拉卡尼说到的,AI 并不会取代人类,但使用 AI 的人类会取代不使用 AI 的人类。 科学研究工作,当然也是如此。
参考文献
[1] Van Noorden R, Perkel J M. AI and science: what 1,600 researchers think[J]. Nature, 2023, 621(7980): 672-675.
[2] Kacena M A, Plotkin L I, Fehrenbacher J C. The use of artificial intelligence in writing scientific review articles[J]. Current Osteoporosis Reports, 2024: 1-7.